
Eberlein Measure and Mechanical Quadrature 
Formulae. II. Numerical Results 

By V. L. N. Sarma* and A. H. Stroud** 

Abstract. In a previous paper it was shown how a probability measure (Eberlein measure) 
on the closed unit ball of the sequence space, 11, can be used to find the variance 0-2 of the 
error functional for a quadrature formula for the k-dimensional cube, regarded as a 
random variable. Here we give values of o- for some specific formulae. 

1. Introduction. Let the function x(t), defined on the k-dimensional cube 
(k= [-1, ]k be an element of the sequence space 11, and let 

I(x) = 2k x(t)dt 

be the normalized integral of x. As an approximation to I(x), let 

N 

(1) JN(X) = ZAmx(t (M) 
m=l 

be an N-point quadrature formula with abscissae t(m) and weights Am. Sarma [12] 
showed that, with respect to the Eberlein measure, the variance of the error func- 
tional is 

00 

(2) 2(I - JN) = 3-Z1E 2nX-'Sn 
n=O 

where Xo = 1, X\ = HI'=, (ci + 1) (ci + 2), ci = (k + i-1)!/Qc- 

Sn = E [I(t 1 ... tknk) - JN(tlnl . . . tknk)]2 
nj+. * * +nk=n 

Chebyshev's inequality of probability theory (see, for example [6, p. 21]) states 
that, if we choose x(t) at random, then the probability that II(x) - JN(X) ? pa- is 
greater than 1 - 

p-2 for every real p > 1. 
We denote the 1-dimensional N-point Gauss-Legendre formula by GN and the 

product of k copies of GN for Sk, by GNk. We say that formula (1) has degree d if it 
is exact for all polynomials of degree < d and there is at least one polynomial of 
degree d + 1 for which it is not exact. 

2. Some Formulae for k = 1, 2, 3. Table 1 gives values of a(I - GN) for N = 

2(1)20 and also values of the ratio o(I - GN)/0(I - GN1). This ratio appears to 
approach the constant 0.1 as N - cc. 

Tables 2 and 3 give a for various known formulae for k = 2 and 3 respectively. 
For kc > 2 the series (2) converges very rapidly. For the formulae of Table 2 the 
first nonzero term in (2) gives a- accurate to between 3 and 4 significant figures. For 
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the formulae of Table 3 the first nonzero term in (2) gives a- accurate to more than 4 
significant figures. 

TABLE 1. 

Values of a- for Gauss-Legendre Formulae 
N a-(I - GN) a(I - GN)/a(I - GN-1) 

2 (-2)0.61788 02642 
3 (-3)0.57557 61595 0.0931533 
4 (-4)0.54077 02990 0.0939529 
5 (-5)0.51383 28919 0.0950187 
6 (-6)0.49316 72623 0.0959781 
7 (-7)0.47717 85940 0.0967580 
8 (-8)0.46462 69322 0.0973696 
9 (-9)0.45461 68316 0.0978456 

10 (-10)0.44651 66920 0.0982182 
11 (-11)0.43988 17644 0.0985141 
12 (-12)0.43439 57959 0.0987529 
13 (-13)0.42983 02638 0.0989490 
14 (-14)0.42601 68354 0.0991128 
15 (-15)0.42282 89741 0.0992517 
16 (-16)0.42016 96426 0.0993711 
17 (-17)0.41796 30121 0.0994748 
18 (-18)0.41614 87985 0.0995659 
19 (-19)0.41467 83304 0.0996466 
20 (-20)0.41351 17701 0.0997186 

TABLE 2. 

Values of or for Some 2-Dimensional Formulae 
Formula 

4-point 3rd-degree, G22 (-3)0.528326 
7-point 5th-degree, Radon [10] (-5)0.503273 
7-point 5th-degree, Albrecht, Collatz [1] (-5)0.463483 
8-point 5th-degree, Burnside [2] (-5)0.463685 
9-point 5th-degree, G32 (-5)0.427840 

13-point 5th-degree, Tyler [14] (-5)0.943847 
13-point 5th-degree, Albrecht, Collatz [1] (-5)0.491957 
12-point 7th-degree, Tyler [14] (-7)0.238278. 
12-point 7th-degree, Mysovskih [9] (-7)0.440449> 
13-point 7th-degree, Maxwell [7] (-7)0.220939* 
16-point 7th-degree, G42 (-7)0.218383 
21-point 7th-degree, Tyler [14] (-7)0.666175 
25-point 9th-degree, G52 (-10)0.768536 
36-point 11th-degree, G62 (-12)0.197917 
49-point 13th-degree, 672 (-15)0.389280 

We wish to point out that the 34-point 7th-degree formula of Hammer and 
Wymore [5], for G3, has a slight error as given. Their values of a3 and a4 must bee 
interchanged. This formula is one of a one-parameter family of 34-point 7th-degree: 
formulas. The formula of this family with parameters 
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xi = 0.9317380000 al/8 = 0.03558180896 
X2 = 0.9167441779 a2/8 = 0.01247892770 
X3 = 0.4086003800 a3/8 = 0.05286772991 
X4 = 0.7398529500 a4/8 = 0.02672752182 

a- (-10)0.1528581321 

minimizes a to 7 significant figures. 

TABLE 3. 

Values of a for Some 3-Dimensional Fo mulae 
Formula 0f 

6-point 3rd-degree, Tyler [14] (-3)0.109480 
8-point 3rd-degree, G23 (-4)0.560700 
9-point 3rd-degree, Ewing [3] (-3)0.163472 

13-point 3rd-degree, Mustard, Lyness, Blatt [8] (-4)0.911141 
15-point 3rd-degree, Mustard, Lyness, Blatt [8] (-4)0.841052 
13-point 5th-degree, Stroud [13] (-7)0.537794 
14-point 5th-degree, Hammer, Stroud [4] (-7)0.526443 
21-point 5th-degree, Tyler [14] (-6)0.151476 
23-point 5th-degree, Mustard, Lyness, Blatt [8] (-7)0.703028 
27-point 5th-degree, G33 (-7)0.434608 
42-point 5th-degree, Sadowsky [11] (-6)0.371205 
27-point 7th-degree, (-10)0.402935 

Maxwell [7], Hammer, Stroud [4]*** ((-10)0.511539) 
34-point 7th-degree, Hammer, Wymore [5] (-10)0.153140 
64-point 7th-degree, G43 (-10)0.126615 

125-point 9th-degree, G53 (-14)0.167686 
216-point 11th-degree, G63 (-18)0.114815 

3. Additional Remarks. We attempted to compute some formulae which, for 
given N, minimize S. We will summarize our results. 

For k = 1 and N - 2, 3 we obtained by direct search formulae with a- equal to 
(-2)0.60322 and (-3)0.53285 respectively. For k = 1 and N > 4 we tried a 
modified Newton's method using GN as the initial guess; the method failed to 
converge. 

For k = 2 using Newton's method and starting with known formulae with 
N = 4, 7, 8, 9 Newton's method usually converged extremely slowly and in all 
cases the value of a- was not reduced by more than a few units in the fourth significant 
figure. 

The quantity 

(3) (Yk/2 k)/2 

where 'Yk was defined in [12], can be interpreted as the average of 0f over all 2k-point 

Monte Carlo formulae. For k large, (3) is less than r(I - G2k); we found by computa- 
tion that o-(I - G2k) is less than (3) for k < 107. The first nonzero term in the series 
(2) gives o-(I - G2k) (16/45) (k/(3X4))l 2 which is accurate to 10 significant figures 
for all k ? 7. 

*** There are two such formulae; the value of o- given in parentheses is for the formula given 
in parentheses in 4]. 
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The above computations were carried out on the CDC 6400 at the State Uni- 
versity of New York at Buffalo. Most of the computations were done in single 
precision; in some cases double precision was used. In single precision this computer 
carries about 14.5 significant figures. We are indebted to the referee for suggestions 
concerning the form of this article. 
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